Congruences in unitary space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimension of Real Unitary Space

One can prove the following two propositions: (1) Let V be a real unitary space, A, B be finite subsets of V , and v be a vector of V . Suppose v ∈ Lin(A∪B) and v / ∈ Lin(B). Then there exists a vector w of V such that w ∈ A and w ∈ Lin(((A ∪ B) \ {w}) ∪ {v}). (2) Let V be a real unitary space and A, B be finite subsets of V . Suppose the unitary space structure of V = Lin(A) and B is linearly ...

متن کامل

Differential unitary space-time modulation

We present a framework for differential modulation with multiple antennas across a continuously fading channel, where neither the transmitter nor the receiver knows the fading coefficients. The framework can be seen as a natural extension of standard differential phase shift keying (DPSK) commonly used in single-antenna unknown-channel systems. We show how our differential framework links the u...

متن کامل

Topology of Real Unitary Space

(1) For every right zeroed non empty RLS structure V holds every Affine subset M of V is parallel to M. (2) Let V be an add-associative right zeroed right complementable non empty RLS structure and M, N be Affine subsets of V . If M is parallel to N, then N is parallel to M. (3) Let V be an Abelian add-associative right zeroed right complementable non empty RLS structure and M, L, N be Affine s...

متن کامل

Convergent Sequences in Complex Unitary Space

For simplicity, we adopt the following convention: X is a complex unitary space, x, y, w, g, g1, g2 are points of X, z is a Complex, q, r, M are real numbers, s1, s2, s3, s4 are sequences of X, k, n, m are natural numbers, and N1 is an increasing sequence of naturals. Let us consider X, s1. We say that s1 is convergent if and only if: (Def. 1) There exists g such that for every r such that r > ...

متن کامل

Operations on Subspaces in Real Unitary Space

Let V be a real unitary space and let W1, W2 be subspaces of V . The functor W1 + W2 yields a strict subspace of V and is defined as follows: (Def. 1) The carrier of W1 + W2 = {v + u; v ranges over vectors of V , u ranges over vectors of V : v ∈ W1 ∧ u ∈ W2}. Let V be a real unitary space and let W1, W2 be subspaces of V . The functor W1 ∩ W2 yields a strict subspace of V and is defined by: (De...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1943

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1943-0007632-2